Directions: Select the best response to each problem below. Items marked NC are not permitted a calculator to answer the problem and those marked C may require the use of a calculator to solve the problem.

1	NC '08 #3	If $f(x) = (x-1)(x^2+2)^3$, then $f'(x) =$
		(A) $6x(x^2+2)^2$
		(B) $6x(x-1)(x^2+2)^2$
		(C) $(x^2+2)^2(x^2+3x-1)$
		(D) $(x^2+2)^2(7x^2-6x+2)$
		(E) $-3(x-1)(x^2+2)^2$
2	NC '08 #6	$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2 \end{cases}$
		$\begin{bmatrix} 1 & \text{if } x = 2 \end{bmatrix}$
		I. f has a limit at $x = 2$. II. f is continuous at $x = 2$. III. f is differentiable at $x = 2$.
		(A) I only (B) II only (C) III only (D) I and II (E) I, II, and only III
3	NC	The function f is twice differentiable with $f(2)=1$, $f'(2)=4$, and $f''(2)=3$. What is
	08 #24	the value of the approximation of $f(1.9)$ using the line tangent to the graph of f at $x = 2$?
		(A) 0.4 (B) 0.6 (C) 0.7 (D) 1.3 (E) 1.4
4	NC '08 #25	$f(x) = \begin{cases} cx+d & \text{for } x \le 2\\ r^2 - cx & \text{for } x > 2 \end{cases}$
		Let f be the function defined above, where c and d are constants. If f is differentiable at $x = 2$, what is the value of $c+d$?
		(A) -4 (B) -2 (C) 0 (D) 2 (E) 4
5	C '08 #78	The first derivative of the function f is defined by $f'(x) = \sin(x^3 - x)$ for $0 \le x \le 2$. On
	00 #70	what intervals is f increasing?
		(A) $1 \le x \le 1.445$ only (B) $1 \le x \le 1.601$
		(B) $1 \le x \le 1.691$ (C) $1.445 \le x \le 1.875$
		(D) $0.577 \le x \le 1.445$ and $1.875 \le x \le 2$ (E) $0 \le x \le 1$ and $1.691 \le x \le 2$

13	NC '03 #15	Let f be the function with derivative given by $f'(x) = x^2 - \frac{2}{x}$. On which of the following
		intervals is f decreasing? (A) $(-\infty, -1]$ only
		$(B) (-\infty \ 0)$
		(C) $[-10]$ only
		(D) $(0^{3}/2)$
		$\begin{bmatrix} \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \end{bmatrix}$
		$(\mathbf{L}) = \left[\sqrt[3]{2}, \infty\right)$
14	NC	If the line tangent to the graph of the function f at the point (1, 7) passes through the point
	'03 #16	(-2, -2), then $f'(1)$ is
		(A) -5 (B) 1 (C) 3 (D) 7 (E) undefined
15	NC	<u>x -4 -3 -2 -1 0 1 2 3 4</u>
	203 #18	g'(x) 2 3 0 -3 -2 -1 0 3 2
		The derivative g of a function g is continuous and has exactly two zeros. Selected values
		of g are given in the table above. If the domain of g is the set of all real numbers, then g is decreasing on which of the following intervals?
		(A) $-2 \le r \le 2$ only
		(B) $-1 \le x \le 1$ only
		$\begin{array}{cc} (C) & x \ge -2 \\ (D) & x \ge 2 \\ \end{array}$
		(D) $x \ge 2$ only (E) $x \le -2$ or $x \ge 2$
16	NC '03 #20	$f(x) = \begin{cases} x+2 & \text{if } x \le 3 \\ 4x-7 & \text{if } x \ge 2 \end{cases}$
		Let f be the function given above. Which of the following statements are true about f?
		I. $\lim f(x)$ exists.
		II. f is continuous at $x = 3$.
		III. f is differentiable at $x = 3$.
		(A) None (B) I only (C) II only (D) I and II (E) I, II, and
		only III
17	NC	Let f be the function defined by $f(x) = 4x^3 - 5x + 3$. Which of the following is an
	'03 #24	equation of the line tangent to the graph of <i>f</i> at the point where $x = -1$?
		(A) $y = 7x - 3$ (B) $y = 7x + 7$
		(C) $y = 7x + 11$
		(D) $y = -5x - 1$
		(E) $y = -5x - 5$

18 C	Let <i>f</i> be the function with derivative given by $f'(x) = sin(x^2 + 1)$. How many relative extrema does <i>f</i> have on the interval $2 < x < 4$?
'03 #81	(A) One (B) Two (C) Three (D) Four (E) Five
19 C '03 #89	Let <i>f</i> be a differentiable function with $f(2)=3$ and $f'(2)=-5$, and let <i>g</i> be the function defined by $g(x) = xf(x)$. Which of the following is an equation of the line tangent to the graph of <i>g</i> at the point where $x = 2$? (A) $y = 3x$ (B) $y-3=-5(x-2)$ (C) $y-6=-5(x-2)$ (D) $y-6=-7(x-2)$ (E) $y-6=-10(x-2)$