\qquad
\qquad

Directions: Select the best response to each problem below. Items marked NC are not permitted a calculator to answer the problem and those marked C may require the use of a calculator to solve the problem.

1. \qquad NC '08 \#3	If $f(x)=(x-1)\left(x^{2}+2\right)^{3}$, then $f^{\prime}(x)=$ (A) $6 x\left(x^{2}+2\right)^{2}$ (B) $6 x(x-1)\left(x^{2}+2\right)^{2}$ (C) $\left(x^{2}+2\right)^{2}\left(x^{2}+3 x-1\right)$ (D) $\left(x^{2}+2\right)^{2}\left(7 x^{2}-6 x+2\right)$ (E) $\quad-3(x-1)\left(x^{2}+2\right)^{2}$
$\begin{array}{ll} \hline 2 . & \begin{array}{l} \text { NC } \\ \\ \\ 0 \end{array}{ }^{2} \# 6 \end{array}$	$f(x)=\left\{\begin{array}{lll} \frac{x^{2}-4}{x-2} & \text { if } & x \neq 2 \\ 1 & \text { if } & x=2 \end{array}\right.$

Let f be the function defined above. Which of the following statements about f are true?
I. f has a limit at $x=2$.
II. f is continuous at $x=2$.
III. f is differentiable at $x=2$.
(A) I only
(B) II only
(C) III only
(D) I and II
(E) I, II, and only III

3.	NC
	$08 \# 24$

The function f is twice differentiable with $f(2)=1, f^{\prime}(2)=4$, and $f^{\prime \prime}(2)=3$. What is the value of the approximation of $f(1.9)$ using the line tangent to the graph of f at $x=2$?
(A) 0.4
(B) 0.6
(C) 0.7
(D) 1.3
(E) 1.4

4.___	NC
	$08 \# 25$

$$
f(x)= \begin{cases}\mathrm{cx}+\mathrm{d} & \text { for } x \leq 2 \\ x^{2}-\mathrm{cx} & \text { for } x>2\end{cases}
$$

Let f be the function defined above, where c and d are constants. If f is differentiable at $x=2$, what is the value of $c+d$?
(A) -4
(B) -2
(C) 0
(D) 2
(E) 4

5.__ \quad| C |
| :--- |
| ’08 \#78 |

The first derivative of the function f is defined by $f^{\prime}(x)=\sin \left(x^{3}-x\right)$ for $0 \leq x \leq 2$. On what intervals is f increasing?
(A) $1 \leq x \leq 1.445$ only
(B) $1 \leq x \leq 1.691$
(C) $1.445 \leq x \leq 1.875$
(D) $0.577 \leq x \leq 1.445$ and $1.875 \leq x \leq 2$
(E) $0 \leq x \leq 1$ and $1.691 \leq x \leq 2$

The graph of a function f is shown above. Which of the following could be the graph of f^{\prime}, the derivative of f ?
(A)

(B)

(C)

(D)

(E)

The graph of f^{\prime}, the derivative of f, is shown above for $-2 \leq x \leq 5$. On what intervals is f increasing?
(A) $[-2,1]$ only
(B) $[-2,3]$
(C) $[3,5]$ only
(D) $[0,1.5]$ and $[3,5]$
(E) $[-2,-1],[1,2]$, and $[4,5]$

8.__ NC	N	
	N $03 \# 1$	If $y=\left(x^{3}+1\right)^{2}$, then $\frac{d y}{d x}=$

(A) $\left(3 x^{2}\right)^{2}$
(B) $2\left(x^{3}+1\right)$
(C) $2\left(3 x^{2}+1\right)$
(D) $3 x^{2}\left(x^{3}+1\right)$
(E) $6 x^{2}\left(x^{3}+1\right)$

The graph of f^{\prime}, the derivative of the function f, is shown above. Which of the following statements is true about f ?
(A) f is decreasing for $-1 \leq x \leq 1$
(B) f is increasing for $-2 \leq x \leq 0$
(C) f is increasing for $1 \leq x \leq 2$
(D) f has a local minimum at $x=0$
(E) f is not differentiable at $x=-1$ and $x=1$

$\begin{array}{ll} \hline 11 . _ & \mathrm{NC} \\ , 03 \# 13 \end{array}$	

The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?
(A) a
(B) b
(C) c
(D) d
(E) e

12.__ | NC |
| :--- |
| N14 | If $y=x^{2} \sin 2 x$, then $\frac{d y}{d x}=$

(A) $2 x \cos 2 x$
(B) $4 x \cos 2 x$
(C) $2 x(\sin 2 x+\cos 2 x)$
(D) $2 x(\sin 2 x-x \cos 2 x)$
(E) $2 x(\sin 2 x+x \cos 2 x)$

13. \qquad NC '03 \#15	Let f be the function with derivative given by $f^{\prime}(x)=x^{2}-\frac{2}{x}$. On which of the following intervals is f decreasing? (A) $(-\infty,-1]$ only (B) $(-\infty, 0)$ (C) $[-1,0)$ only (D) $(0, \sqrt[3]{2}]$ (E) $[\sqrt[3]{2}, \infty)$
	If the line tangent to the graph of the function f at the point $(1,7)$ passes through the point $(-2,-2)$, then $f^{\prime}(1)$ is (A) -5 (B) 1 (C) 3 (D) 7 (E) undefined
15.__ $\begin{aligned} & \text { NC } \\ & \text { '03 \#18 }\end{aligned}$	x -4 -3 -2 -1 0 1 2 3 4 $g^{\prime}(x)$ 2 3 0 -3 -2 -1 0 3 2 The derivative g 'of a function g is continuous and has exactly two zeros. Selected values of g 'are given in the table above. If the domain of g is the set of all real numbers, then g is decreasing on which of the following intervals? (A) $-2 \leq x \leq 2$ only (B) $-1 \leq x \leq 1$ only (C) $x \geq-2$ (D) $x \geq 2$ only (E) $x \leq-2$ or $x \geq 2$
16.__ $\quad \begin{aligned} & \text { NC } \\ & \text { '03 \#20 }\end{aligned}$	$f(x)= \begin{cases}x+2 & \text { if } x \leq 3 \\ 4 x-7 & \text { if } x>3\end{cases}$ Let f be the function given above. Which of the following statements are true about f ? I. $\quad \lim _{x \rightarrow 3} f(x)$ exists. II. $\quad f$ is continuous at $x=3$. III. $\quad f$ is differentiable at $x=3$. (A) None (B) I only (C) II only (D) I and II (E) I, II, and only III
$\text { 17.___ } \begin{aligned} & \text { NC } \\ & , 03 \# 24 \end{aligned}$	Let f be the function defined by $f(x)=4 x^{3}-5 x+3$. Which of the following is an equation of the line tangent to the graph of fat the point where $x=-1$? (A) $y=7 x-3$ (B) $y=7 x+7$ (C) $y=7 x+11$ (D) $y=-5 x-1$ (E) $y=-5 x-5$

18.	C
	$03 \# 81$

Let f be the function with derivative given by $f^{\prime}(x)=\sin \left(x^{2}+1\right)$. How many relative extrema does f have on the interval $2<x<4$?
(A) One
(B) Two
(C) Three
(D) Four
(E) Five
19. \qquad Let f be a differentiable function with $f(2)=3$ and $f^{\prime}(2)=-5$, and let g be the function defined by $g(x)=x f(x)$. Which of the following is an equation of the line tangent to the graph of g at the point where $x=2$?
(A) $y=3 x$
(B) $y-3=-5(x-2)$
(C) $y-6=-5(x-2)$
(D) $y-6=-7(x-2)$
(E) $y-6=-10(x-2)$

