Patterns and Tricks for Memorizing the Unit Circle Values

1. The values for 0, $\frac{\pi}{2}$, π , and $\frac{3\pi}{2}$ correspond with point that lie on the x- or y-axis.

Radian Measure	cosθ	sin θ	tanθ
0	1	0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	0	1	Undefined
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	- \sqrt{3}
$\frac{3\pi}{4}$	$-rac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	- 1
$\frac{5\pi}{6}$	$-rac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$
π	- 1	0	0
$\frac{7\pi}{6}$	$-rac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{5\pi}{4}$	$-rac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
$\frac{4\pi}{3}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{3\pi}{2}$	0	- 1	Undefined
$\frac{5\pi}{3}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\sqrt{3}$
$\frac{7\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	- 1
$\frac{11\pi}{6}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$

2. The <u>cosine</u> value for any angle with a <u>6</u> in the denominator will have the numerical value $\frac{\sqrt{3}}{2}$.

Remember that because these values come from the special right triangles, $\frac{\sqrt{3}}{2}$ will always be

paired with $\frac{1}{2}$. So the numerical sine value for any angle with a 6 in the denominator is $\frac{1}{2}$. Be sure to remember to consider which quadrant the angle falls in on the coordinate plane to assign positive and negative signs.

A trick to remember: 3 times 2 is 6, so if the denominator is 6, the cosine value must be $\frac{\sqrt{3}}{2}$.

Radian Measure	cosθ	sin 0	tanθ
0	1	0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	0	1	Undefined
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	- \sqrt{3}
$\frac{3\pi}{4}$	$-rac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	- 1
$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-rac{\sqrt{3}}{3}$
π	- 1	0	0
$\frac{7\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
$\frac{4\pi}{3}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{3\pi}{2}$	0	- 1	Undefined
$\frac{5\pi}{3}$	$\frac{1}{2}$	$-rac{\sqrt{3}}{2}$	- \sqrt{3}
$\frac{7\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-rac{\sqrt{2}}{2}$	- 1
$\frac{11\pi}{6}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$

3. The <u>cosine</u> value for any angle with a <u>4</u> in the denominator will have the numerical value $\frac{\sqrt{2}}{2}$.

Remember that because these values come from the special right triangles, $\frac{\sqrt{2}}{2}$ will always be paired with $\frac{\sqrt{2}}{2}$. So the numerical sine value for any angle with a 4 in the denominator is also $\frac{\sqrt{2}}{2}$. Again, appropriate positive and negative signs will need to be assigned based on quadrant location.

A trick to remember: 2 times 2 is 4, so if the denominator is 4, the cosine value must be $\frac{\sqrt{2}}{2}$.

Radian Measure	cosθ	sin 0	tanθ
0	1	0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	0	1	Undefined
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	- \sqrt{3}
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	- 1
$\frac{5\pi}{6}$	$-rac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-rac{\sqrt{3}}{3}$
π	-1	0	0
$\frac{7\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
$\frac{4\pi}{3}$	$-\frac{1}{2}$	$-rac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{3\pi}{2}$	0	- 1	Undefined
$\frac{5\pi}{3}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	- \sqrt{3}
$\frac{7\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	- 1
$\frac{11\pi}{6}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$

4. The <u>cosine</u> value for any angle with a <u>3</u> in the denominator will have the numerical value $\frac{1}{2}$.

Remember that because these values come from the special right triangles, $\frac{1}{2}$ will always be paired with $\frac{\sqrt{3}}{2}$. So the numerical sine value for any angle with a 3 in the denominator is $\frac{\sqrt{3}}{2}$. Again, appropriate positive and negative signs will need to be assigned based on quadrant location.

A trick to remember: 1 plus 2 is 3, so if the denominator is 3, the cosine value must be $\frac{1}{2}$.

Radian Measure	cosθ	sin 0	tanθ
0	1	0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	0	1	Undefined
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	- \sqrt{3}
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	- 1
$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$
π	- 1	0	0
$\frac{7\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
$\frac{4\pi}{3}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{3\pi}{2}$	0	- 1	Undefined
$\frac{5\pi}{3}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	- \sqrt{3}
$\frac{7\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-rac{\sqrt{2}}{2}$	- 1
$\frac{11\pi}{6}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$