Patterns and Tricks for Memorizing the Unit Circle Values

1. The values for $0, \frac{\pi}{2}$, π, and $\frac{3 \pi}{2}$ correspond with point that lie on the x - or y-axis.

Radian Measure	$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \theta$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$
0	1	0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	0	1	Undefined
$\frac{2 \pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\sqrt{3}$
$\frac{3 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1
$\frac{5 \pi}{6}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$
π	-1	0	0
$\frac{7 \pi}{6}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{5 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
$\frac{4 \pi}{3}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{3 \pi}{2}$	0	-1	Undefined
$\frac{5 \pi}{3}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\sqrt{3}$
$\frac{7 \pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
$\frac{11 \pi}{6}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$

2. The cosine value for any angle with a $\underline{\mathbf{6}}$ in the denominator will have the numerical value $\frac{\sqrt{3}}{2}$. Remember that because these values come from the special right triangles, $\frac{\sqrt{3}}{2}$ will always be paired with $\frac{1}{2}$. So the numerical sine value for any angle with a 6 in the denominator is $\frac{1}{2}$. Be sure to remember to consider which quadrant the angle falls in on the coordinate plane to assign positive and negative signs.

A trick to remember: 3 times 2 is 6 , so if the denominator is 6 , the cosine value must be $\frac{\sqrt{3}}{2}$.

Radian Measure	$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \theta$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$
0	1	0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	0	1	Undefined
$\frac{2 \pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\sqrt{3}$
$\frac{3 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1
$\frac{5 \pi}{6}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$
π	-1	0	0
$\frac{7 \pi}{6}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{5 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
$\frac{4 \pi}{3}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{3 \pi}{2}$	0	-1	Undefined
$\frac{5 \pi}{3}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\sqrt{3}$
$\frac{7 \pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
$\frac{11 \pi}{6}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$

3. The cosine value for any angle with a $\underline{4}$ in the denominator will have the numerical value $\frac{\sqrt{2}}{2}$. Remember that because these values come from the special right triangles, $\frac{\sqrt{2}}{2}$ will always be paired with $\frac{\sqrt{2}}{2}$. So the numerical sine value for any angle with a 4 in the denominator is also $\frac{\sqrt{2}}{2}$. Again, appropriate positive and negative signs will need to be assigned based on quadrant location.

A trick to remember: 2 times 2 is 4 , so if the denominator is 4 , the cosine value must be $\frac{\sqrt{2}}{2}$.

Radian Measure	$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$
0	1	0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	0	1	Undefined
$\frac{2 \pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\sqrt{3}$
$\frac{3 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1
$\frac{5 \pi}{6}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$
π	-1	0	0
$\frac{7 \pi}{6}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{5 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
$\frac{4 \pi}{3}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{3 \pi}{2}$	0	-1	Undefined
$\frac{5 \pi}{3}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\sqrt{3}$
$\frac{7 \pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
$\frac{11 \pi}{6}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$

4. The cosine value for any angle with a $\underline{\mathbf{3}}$ in the denominator will have the numerical value $\frac{1}{2}$. Remember that because these values come from the special right triangles, $\frac{1}{2}$ will always be paired with $\frac{\sqrt{3}}{2}$. So the numerical sine value for any angle with a 3 in the denominator is $\frac{\sqrt{3}}{2}$. Again, appropriate positive and negative signs will need to be assigned based on quadrant location.

A trick to remember: 1 plus 2 is 3 , so if the denominator is 3 , the cosine value must be $\frac{1}{2}$.

Radian Measure	$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$
0	1	0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	0	1	Undefined
$\frac{2 \pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\sqrt{3}$
$\frac{3 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1
$\frac{5 \pi}{6}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$
π	-1	0	0
$\frac{7 \pi}{6}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{5 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
$\frac{4 \pi}{3}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{3 \pi}{2}$	0	-1	Undefined
$\frac{5 \pi}{3}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\sqrt{3}$
$\frac{7 \pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
$\frac{11 \pi}{6}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$

